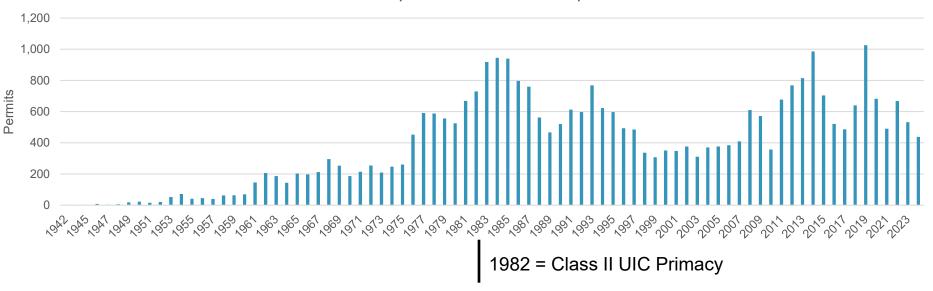


Permitting Disposal Wells in the Permian Basin

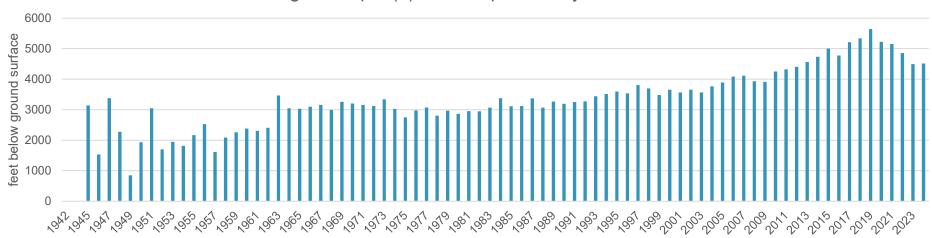
Paul Dubois, Director of Technical Permitting Ted Wooten, Chief Engineer Austin Gaskamp, Engineering Specialist, ISPU

July 2025

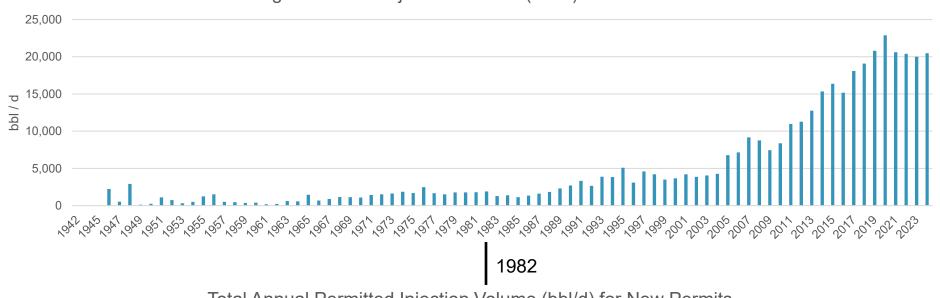
Today's Agenda

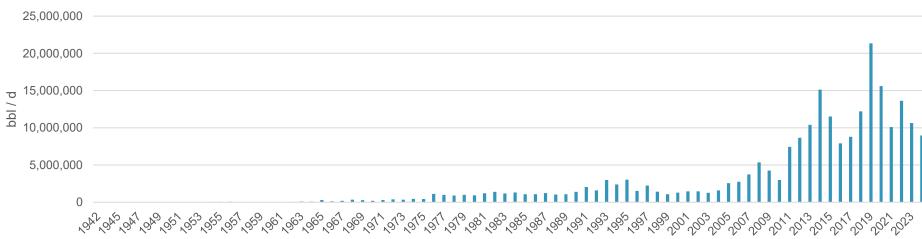


- History
- Applicability
- Elements of the Review
- Post-Permitting Requirements and Special Conditions
- Seismicity
- Demonstration

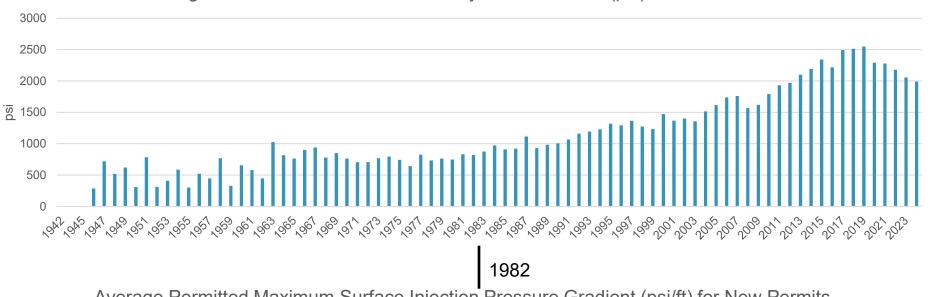

Permian Basin Disposal Well Permitting History (1 of 3)

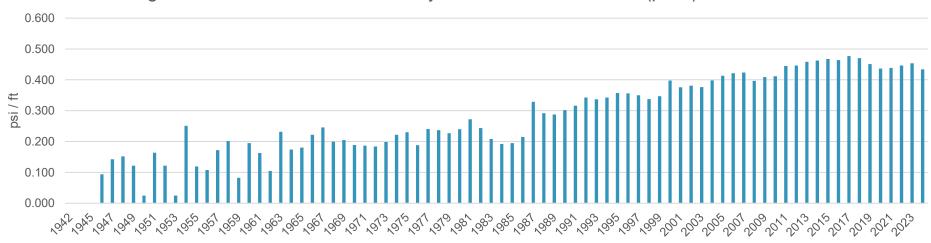
Number of Disposal Permits Issued per Year


Average of Depth (ft) to the Top of the Injection Interval


Permian Basin Disposal Well Permitting History (2 of 3)

Average Permitted Injection Volume (bbl/d) for New Permits


Total Annual Permitted Injection Volume (bbl/d) for New Permits


Permian Basin Disposal Well Permitting History (3 of 3)

Average Permitted Maximum Surface Injection Pressure (psi) for New Permits

Average Permitted Maximum Surface Injection Pressure Gradient (psi/ft) for New Permits

End Points

- Current rules and permitting program do not adequately address these risk drivers and challenges.
- Water Code §27.051(b)(1-4)
 - "The Commission ...may issue the permit if it finds:"
 - The disposal well is in the public interest,
 - The disposal well will not endanger or injure any hydrocarbon resources,
 - With adequate safeguards, the disposal well will protect freshwater resources from pollution, and
 - The applicant has made a satisfactory showing of financial responsibility per Water Code §27.073.

Overview of Changes

- Maximum Surface Injection Pressure (MSIP) limited by confinement zone in-situ stress and stress contrast.
- Maximum Daily Injection Volume (MDIV) limited by initial average reservoir pressure.
- Maximum Injection Rate (MIR) Instantaneous Rate limitation.
- 2-mile radial Area of Review (AOR):
 - Strict limits within ½ mile
 - MSIP reduction within 2-mile on condition

A Note About Public Safety and the Public Interest

- We are asking for PE/PG sealing of certain information.
- This is consistent with our traditional practice. See our web guidance https://www.rrc.texas.gov/oil-and-gas/applications-and-permits/injection-storage-permits/oil-and-gas-waste-disposal/injection-disposal-permit-procedures/technical-review/
 - Engineering and geologic studies
 - Pressure front calculations
 - Closure cost estimates for pits associated with commercial disposal wells
 - Well log formation correlation and analysis which may be performed for the Area of Review
 - Well log interpretation for geologic isolation from freshwater, effective reservoir thickness, etc.
- This is the law.
 - The practice of engineering is regulated by the Texas Occupations Code, Title 6, Chapter 1001.
 - The practice of geoscience is regulated by the Texas Occupations Code, Title 6, Chapter 1002.

Texas Occupations Code Title 6 Subtitle A § 1001.004. **LEGISLATIVE PURPOSE AND INTENT**; LIBERAL CONSTRUCTION OF CHAPTER.

- (a) The legislature recognizes the vital impact that the rapid advance of knowledge of the mathematical, physical, and engineering sciences as applied in the practice of engineering has on the lives, property, economy, and security of state residents and the national defense.
- (b) The purpose of this chapter is to:
 - (1) protect the public health, safety, and welfare;

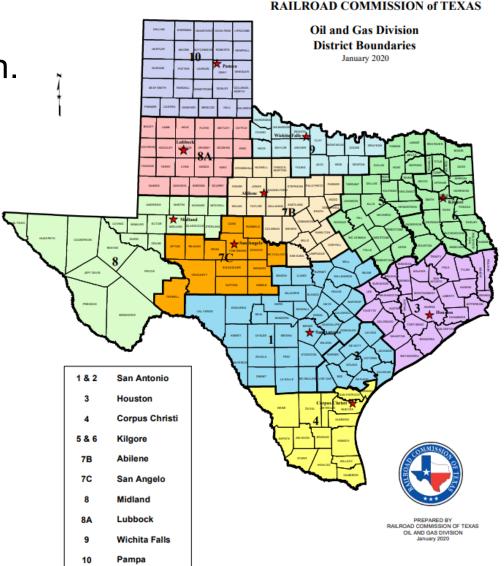
• • •

Applicability

All disposal wells in the Permian Basin.

- All SWR 9 Applications

 All SWR 46 Applications with Line 21 box checked for "Disposal"


 Permian Basin is defined by RRC Districts 7C, 08, and 8A.

Title 16 ECONOMIC REGULATION

Part 1 RAILROAD COMMISSION OF TEXAS

Chapter 3 OIL AND GAS DIVISION

Rule §3.46 Fluid Injection into Productive Reservoirs

Application Information and Excel Workbook

https://www.rrc.texas.gov/oil-and-gas/applications-andpermits/injection-storage-permits/oil-and-gas-wastedisposal/injection-disposal-permit-procedures/pb-disposalreview/

Checklist:

Completed UIC Permian Pressure Review V1.0 Workbook:

Permian Basin Disposal Well Application Checklist

- Excel Application Workbook (available for download on the RRC Website, Permian Basin Disposal Well Review Page):
 - Well Template
 - AOR Template
- Data Appendix and Report
 - Well Data
 - AOR Data
- Map
- Cross Section
- Seal of P.E./P.G.

Well Template - Data Input

ALL DATA PROVIDED FROM AN OFFSET WELL, MUST BE EXPLAINED IN DETAIL BY APPLICANT IN SUPPLEMENTAL REPORT.

ALL DATA PROVIDED MUST BE REFERENCED ON A CROSS SECTION THAT INCLUDES REFERENCE WELL EVEN IF IT FALLS OUTSIDE THE 2-MILE AOR

SUPPLEMENTAL REPORT, INCLUDING THE ANALYSIS CONDUCTED TO GENERATE DATA, MUST BE SIGNED BY A PROFESSIONAL ENGINEER/GEOLOGIST

			Today's date is 05/13/2025	
			SOURCE OF DATA (PA	AGE
			REFERENCE FROM SUPPLEMENTAL REPORT)	
RRC UIC TRACKING NUMBER		12345		
OPERATOR		WE HAVE WATER		
LEASE		TOO MUCH H2O		
LEASE/GAS ID NO.		DBM 54-1-40		
WELL NO.		5th 1		
API NO.		000-00000		
LATITUDE IN NAD83 COORDINATES		31.903859	NEED NAD83 COORDINATES	
LONGITUDE IN NAD83 COORDINATES		-103.656344	NEED NAD83 COORDINATES	
INJECTION TBG/CSG I.D.	(inches)	4.49	NOTE IT'S THE INTERNAL DIAMETER IN INCHES	
TOP OF UPPER CONFINING ZONE	(feet)	4,880		
TOP OF PERMITTED INJECTION INTERVAL	(feet)	4,922		
BOTTOM OF PERMITTED INJ INTERVAL	(feet)	7,039		
BOTTOM OF LOWER CONFINING ZONE	(feet)	7,500		
FRAC GRADIENT ABOVE	(psi/ft)	0.75		
FRAC GRADIENT INJECTION INTERVAL	(psi/ft)	0.7		
FRAC GRADIENT BELOW	(psi/ft)	0.75		
PORE PRESSURE	(psi)	3,300		
DEPTH OF PORE PRESSURE MEASUREMENT	(feet)	4,922		
DATE OF PORE PRESSURE MEASUREMENT	(MM/DD/YYYY)	4/22/2025		
TOP OF PERFORATED INTERVAL	(feet)	4,922		
BOTTOM OF PERFORATED INTERVAL	(feet)	7,039		
ACTUAL FLUID DENSITY (0.468) psi/ft	lb/gal	9.00		
DAILY INJECTION VOLUME REQUESTED	(bwpd)	30,000		
MSIP REQUESTED	(psi/ft)	0.5		
POROSITY	unitless	12.00%		
PERMEABILITY	(millidarcy)	85		
CALCUI	ATED VALUES BELO	<u>W</u>		
NET INJECTION INTERVAL THICKNESS	(ft)	2,117		
NET UPPER CONFINEMENT THICKNESS	(ft)	42		
NET LOWER CONFINEMENT THICKNESS	(ft)	461		
AVERAGE PORE PRESSURE GRADIENT	(psi/ft)	0.670		

- Basic Info.
- Technical Data
- Source of Data,
 Page Numbers to
 Appendix

Well Template - Confinement

- Upper and lower boundaries of the permitted injection interval must prevent fracture growth out the injection interval, as well as act as a permeability barrier.
- In-situ minimum stresses (frac gradients): step rate test, sonic log interpretation, diagnostic fracture injection test (DFIT).

Remember: add reference wells to cross-section.

Create report and appendix of source data (show your work).

Well Template – Pore Pressure

- Average reservoir pressure: BHP measurements, injection / fall-off testing.
- Depth Reference for Measurement
- Date of Measurement

Remember: add reference wells to cross-section.

Create report and appendix of source data (show your work).

Well Template – Permit Interval

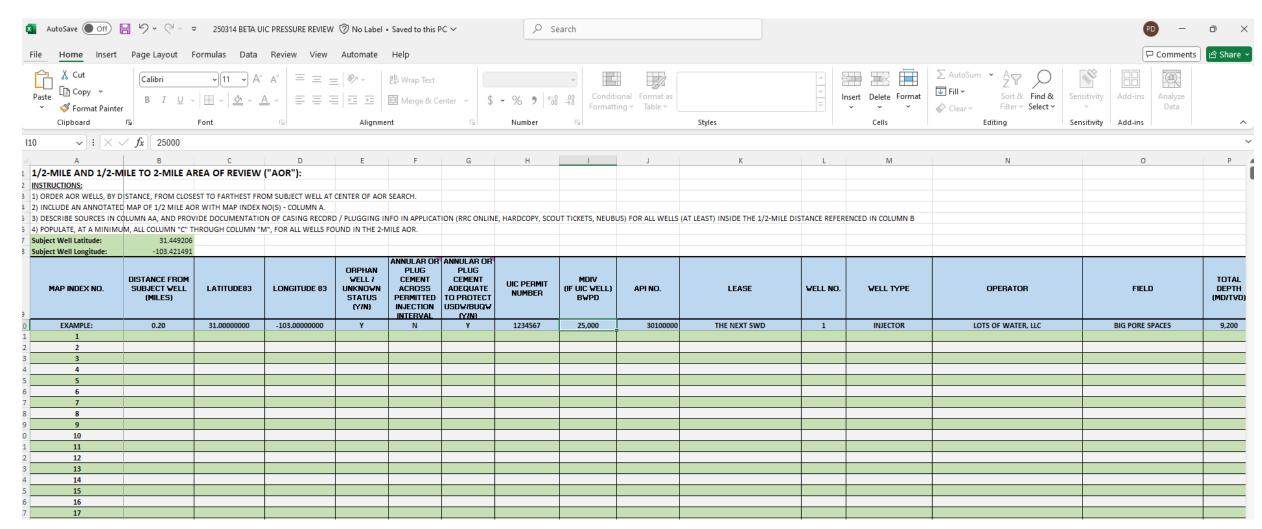
Continuous confining interval

- Bottom of upper confining interval is assumed to be top of permitted injection interval.
- Similarly, bottom of permitted injection interval is assumed to be top of the lower confinement.
- Permeability contrast
- Stress contrast
- Confining intervals above or below: minimum of 25 ft w/ adequate mechanical properties.

Well Template – Other

AVERAGE DENSITY of injection fluids

POROSITY / PERMEABILITY


Well Template – Data Appendix

- Well logs may be submitted as image files with the formation contact picks annotated.
- Most of the supplemental report documents and reference materials should be collated into a single .pdf file with a table of contents and page numbers.
- References on 'Well Template Sources of Data'

AOR Template – Input Data (1 of 2)

AOR Template – Input Data (2 of 2)

'AOR Template' Worksheet:

- Sorted by distance
- Columns A-AD completed for ½-mile AOR
- Columns A-Q completed for 2-mile AOR
- If any information is unavailable or not applicable do not estimate, mark clearly as "unavailable" or "NA."

AOR Criteria: 0 to ½ mile

PASS/FAIL RADIUS OF REVIEW

- Operator is required to assess completion and cementing records of all known wells in the ½-mile radius. Offset wells must:
 - have cement across the injection interval and the cement in the offset wells is adequate to keep injected fluids in the injection interval.
 - have all applicable plugging records to indicate the BUQW is protected from injection in the subject well.
 - contain no orphan wells, improperly plugged or abandoned wells within the ½mile AOR.

AOR Criteria: ½ to 2 mile

WELLBORE DATA INTEGRITY RADIUS OF REVIEW

– If wells in the area between ½ and 2 miles are classified as orphan wells or have insufficient cementing, plugging or completion records, then the MSIP for that permit will automatically receive a 0.05 psi/ft reduction.

AOR Data - Sources of Data

Plugging Reports

Plugging Record RAILROAD COMMISSION OF TEXAS

FORM W-3 Rev. 08/2019

				API N 42-	o. (if availab	ole)		1. RRC	District		
FILE IN DUPLIC	ATE WITH DISTRIC	T OFFIC	F OF DIS	TRICT	N WHIC	H		4. RRC	Lease or ID		
	CATED WITHIN TH							Numb	er		
2. FIELD NAME (as per RRC records)		3. Lease Na	me					5. Well	Number		
6. OPERATOR		6a. Original	Form W-1 file	d in name of:				10. Cour	nty		
7. ADDRESS		6b. Any sub	sequent W-1's	filed in name	of:			11. Date	Drilling Permi	t Issued	
8. Location of well, relative to nearest lease	boundaries	feet from line and feet from							nit Number		
of lease on which this well is located	:-	line of the lease									
9a. SECTION, BLOCK and SURVEY	•	9b. Distance and direction from nearest town in this county						13. Date	Drilling Comm	nenced	
	If multiple completion list all fi	eld names and	oil lease or gas	id no.'s	Gas ID or Oil Lease #	Oil - O Gas - G	Well#	14. Date	Drilling Comp	leted	
or dry)					Oil Lease ii	Gas - G					
 If gas, amt. of cond. on hand at time of plugging 								15. Date	Well Plugged		
CEMENTING TO PLUG AND A	ABANDON DATA:	PLUG #1	PLUG #2	PLUG #3	PLUG	#4 PLU	G #5	PLUG #6	PLUG #6 PLUG #7 PLU		
*19. Cementing Date											
20. Size of Hole or Pipe in which Plug Plac	ced (inches)				_						
21. Depth to Bottom of Tubing or Drill Pip	e (ft.)										
*22. Sacks of Cement Used (each plug)											
*23. Slurry Volume Pumped (cu. ft.)											
*24. Calculated Top of Plug (ft.)											
25. Measured Top of Plug (if tagged) (ft.)											
*26. Slurry Wt. # / Gal.											
*27. Type Cement											
28. CASING AND TUBING RECORD A	AFTER PLUGGING		29. W	as any non-d	Irillable mate	erial (other t	han casir	g) left in this	well? Ye	s No	

OIL AND GAS DIVISION

Completion Reports

Fο	rm W-2																
10	1111 11-2												API No.: 4	2-			
36.																	
Row	Type of Casing (conductor, surfa intermediate, conventional produ- tapered production, or other)		Casing Si	ize (in.)	Hole	e Size (in.)	Setting Depth (ft.)	Multi-St Tool Do (ft.)	epth		i-Stage epth (ft.)	Cement Class	Cement Amount (sacks)	Slurry Volum (cu. ft.)	Top of Cement	Top of Cement Determined By	
1																	
2																	
3																	
4																	
37.	7. LINER RECORD																
Row	Liner Size (in.)	Но	ole Size (i	n.)	Liner	Top (ft.)	Liner Bottom (ft.)		Cement Cement Class Amount (sacks)						Top of Cement Determined By		
1																	
2																	
38.	Liner Size (in.) Hole Size (in.) Liner Top (ft.) Liner Bottom (ft.) Cement Class Amount (sacks) Slurry Volume (cu. ft.) Cement Determined By																
Does	this well currently have	tubing:	set?	YES		□ N	Ю		Indi	cate to	p and b	ottom mea	sured depth	s of comple	tion interval(s) or open hole	
				SWR	13 Exc	eption (a	ttach appro	val)									
(if No	O & no SWR 13 Exception	n obtain	ed, explain	n in rema	arks)												
	Size (in.)		Depth Se	t (ft.)		Pack	er Depth/Ty	pe	From To								
									Fron	n				To			
			Ť						Fron	n		, and the second	, and the second	To			
			Ť	Ţ					Fron	n		, and the second	, and the second	To	,		
					□ NO R 13 Exception (attach approval) narks)					From To							

Other Sources...

Additional Application Attachments

Map showing permit location and offset well locations

 Map should include annotations on well locations that correspond to the index numbers on 'AOR TEMPLATE' in Column A.

Cross section across 2-mile AOR

- Operator will provide a cross section, using the best well control available, illustrating the continuity of the primary lithologic units (i.e., bounding layers, injection intervals) across the 2-mile circular area of review.
 - Include annotations for the tops and bottoms of the injection and confining intervals.
 - Include annotations for the referenced pore pressure (measured pressure and depth reference)
 - Include fracture gradient reference with depth reference.
 - Include API No. / UIC# / Lat-Long (NAD83) for wells used.

AOR Data – Output

Impact of AOR Results:

PRIMARY AOR+ SCORE FOR 0.5 MILE (TOC REVIEW)	PASS	1	FAIL	0
SECONDARY AOR+ SCORE FOR 0.5 MILE TO 2 MILE	PASS	1	REDUCE MSIP	0
MSIP PRESSURE GRADIENT DEDUCT BASED ON AOR SCORE	-0.05	psi/ft		
RADIUS OF REVIEW	2	Miles		
MAX ALLOWABLE PORE PRESSURE GRADIENT	0.75	psi/ft		
MAX POSSIBLE MSIP	0.5	psi/ft		
MINIMUM BARRIER ZONE THICKNESS	25	ft		

PRIMARY AOR+ SCORE FOR 0.5 MILE (TOC REVIEW)	PASS	0	FAIL	1	
SECONDARY AOR+ SCORE FOR 0.5 MILE TO 2 MILE	PASS	0	REDUCE MSIP	1	
MSIP PRESSURE GRADIENT DEDUCT BASED ON AOR SCORE	-0.05	psi/ft	0		
RADIUS OF REVIEW	2	Miles			
MAX ALLOWABLE PORE PRESSURE GRADIENT	0.75	psi/ft			
MAX POSSIBLE MSIP	0.5	psi/ft			
MINIMUM BARRIER ZONE THICKNESS	25	ft			

MSIP & MDIV: Dashboard

Α	В	C D	_	F	G	Н		J	K	L		M	N	0	Р	Q
RRC UIC TRACKING NUMBER		0	PRIMARY AOR+ SCORE FOR 0.5 MILE (TOC REVIEW)	PASS	1	FAIL	0									
OPERATOR		SVD OPERATOR	SECONDARY AOR+ SCORE FOR 0.5 MILE TO 2 MILE	PASS	1 7	REDUCE MSIP	0					CONFININ	G PRESSURE V	VS. DEPTH		
LEASE	LAR	GE VATER VOLUMES	MSIP PRESSURE GRADIENT DEDUCT BASED ON AOR SCORE		psilft	0					∘ ر−		$\overline{}$	$\overline{}$		\neg
LEASE/GAS ID NO.		0	RADIUS OF REVIEW		Miles								\	L		. I
VELL NO.		3	MAX ALLOWABLE PORE PRESSURE GRADIENT	0.75	psilft								MSIF	IP = 2,844 (psig) /	0.500 (psi/ft)	.)
API NO.		003-49114	MAX POSSIBLE MSIP		psilft								\	MAX INJ RATE	E = 20.8 (bpm)	0
LATITUDE IN NAD83 COORDINATES		32.142683	MINIMUM BARRIER ZONE THICKNESS	25	ft					16	000			MDIV = 1	30,000 (bwpd)	n
LONGITUDE IN NAD83 COORDINATES		-102.961589											\		,,	Ή
			MSIP DETERMINATION	ZONE DEPTHS FROM OPERATO R	FRAC GRADIENT FROM OPERATOR	CLOSURE / CONFINING PRESSURE	CLOSURE STRESS OF CONFINING INTERVAL - HYDROSTATIC HEAD	MSIP GRADIENT BASED ON UPPER CONFINING ZONE	PERMITTED MDIY	20	000		-			
INJECTION TBG/CSG I.D.	(inches)	5.5		(ft)	(psi/ft)	(psi)	(psi)	(psi/ft)	(bwpd)				,	1		
TOP OF UPPER CONFINING ZONE	(feet)	4,400	Top of Upper Confining Zone	4,400	1.1	4,840				€				1		- [
TOP OF PERMITTED INJECTION INTERVAL	(feet)	4,500	Bottom of Upper Confining Zone	4,500	1.1	4,950	2.044			₹ 30	000			1		\dashv
BOTTOM OF PERMITTED INJ INTERVAL	(feet)	6,000	Top of Permitted Injection Interval	4,500	0.65	2,925	2,844	0.500	30,000	9				1		- 1
BOTTOM OF LOVER CONFINING ZONE	(feet)	6,050	Bottom of Permitted Injection Interval	6,000	0.65	3,900	2.702			CAL						- 1
FRAC GRADIENT ABOVE	(psilft)	1.1	Top of Lower Confining Zone	6,000	1.10	6,600	3,792			ER						- 1
FRAC GRADIENT INJECTION INTERVAL	(psilft)	0.65	Bottop of Lower Confining Zone	6,050	1.10	6,655				<u> </u>	000			\Box		\dashv
FRAC GRADIENT BELOV	(psilft)	1.1								IR						
PORE PRESSURE	(psi)	2,700	MDIV vs. Reservoir Pore Pressure	А	В	С	D				\vdash					- 1
DEPTH OF PORE PRESSURE MEASUREMENT	(feet)	4,500		40,000	30,000	20,000	10,000						\			- 1
	(MM/DD/YY	4.500	AVE PORE PRESS FROM OPERATOR DATA = 0.600 psi/ft @ 4,500	<= 0.5 psi/ft	> 0.5 psi/ft &	> 0.6 psi/ft &	> 0.7 psi/ft			50	000	1				-
DATE OF PORE PRESSURE MEASUREMENT	YY)		ATE PURE PRESS FROM OPERATOR DATA = 0.600 psirt @ 4,300	t= 0.5 psirre	C= U.6 psirit	<= 0.7 psi/ft	> U.7 psirrc						\			- 1
TOP OF PERFORATED INTERVAL	(feet)	5,800			30000								\	\ \		- 1
BOTTOM OF PERFORATED INTERVAL	(feet)	4/22/2025										_	\ \	\ \ \		
ACTUAL FLUID DENSITY (0.468) psilft	lbłgal	9.00	FINAL MDIV BASED ON PORE PRESSURE	30,000	MAX INJ RATE	20.8				- 60	000		,			-
DAILY INJECTION VOLUME REQUESTED	(bwpd)	30,000		(bwpd)		(bpm)								(\ \)		
MSIP REQUESTED	(psi/ft)	0.5		,		,_ ,,								\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	
POROSITY	unitless	12.00%														- 1
PERMEABILITY	(millidarcy)	85								70	000 └					
CALCULATED VALUE	S BELOW										0	2000	9 400			8000
NET INJECTION INTERVAL THICKNESS	(ft)	1,500										Upper Barrier		Injection In		
NET UPPER CONFINEMENT THICKNESS	(ft)	100										Lower Barrier		M.S.I.P. PRI	ESSURE GRADIEN	T
NET LOVER CONFINEMENT THICKNESS	(ft)	50									_	- Perforation Inter	wal			
AVERAGE PORE PRESSURE GRADIENT	(psifft)	0.600														

Output: Maximum Surface Injection Pressure (1 of 2)

MSIP will be determined by calculating confining stresses of barriers:

PRIMARY AOR+ SCORE FOR 0.5 MILE (TOC REVIEW)	PASS	1	FAIL	0		
SECONDARY AOR+ SCORE FOR 0.5 MILE TO 2 MILE	PASS	1	REDUCE MSIP	0		
MSIP PRESSURE GRADIENT DEDUCT BASED ON AOR SCORE	- 0.05 psi/ft					
RADIUS OF REVIEW	2	Miles				
MAX ALLOWABLE PORE PRESSURE GRADIENT	0.75	psi/ft				
MAX POSSIBLE MSIP	0.5	psi/ft				
MINIMUM BARRIER ZONE THICKNESS	25	ft				
MSIP DETERMINATION	ZONE DEPTHS FROM OPERATOR	FRAC GRADIENT FROM OPERATOR	CLOSURE / CONFINING PRESSURE	CLOSURE STRESS OF CONFINING INTERVAL - HYDROSTATIC HEAD	MSIP GRADIENT BASED ON UPPER CONFINING ZONE	PERMITTED MDIV
	(ft)	(psi/ft)	(psi)	(psi)	(psi/ft)	(bwpd)
Top of Upper Confining Zone	4,400	1.1	4,840			
Bottom of Upper Confining Zone	4,500	1.1	4,950	2,844		
Top of Permitted Injection Interval	4,500	0.65	2,925	2,844	0.500	30,000
Bottom of Permitted Injection Interval	6,000	0.65	3,900	3,792		
Top of Lower Confining Zone	6,000	1.10	6,600	5,792		
Bottop of Lower Confining Zone	6,050	1.10	6,655			
MDIV vs. Reservoir Pore Pressure	Α	В	С	D		
	40,000	30,000	20,000	10,000		
AVE PORE PRESS FROM OPERATOR DATA = 0.600 psi/ft @ 4,500	<= 0.5 psi/ft	> 0.5 psi/ft & <= 0.6 psi/ft	> 0.6 psi/ft & <= 0.7 psi/ft	> 0.7 psi/ft		
		30000				
FINAL MDIV BASED ON PORE PRESSURE	30,000	MAX INJ RATE	20.8			
	(bwpd)		(bpm)			

Output: Maximum Surface Injection Pressure (2 of 2)

MSIP will be determined using the following methodology:

MSIP determination	Depth	Closure stress	MSIP
Upper confinement Parameters	4000	1.00 psi/ft	2,140
Lower confinement Parameters	6000	0.80 psi/ft	2,010

capped at 0.50 psi/ft

Example Calculation $-(1.00 - 0.465) \times 4,000 = 2,140 \text{ PSI (upper)}$

Example Calculation $-(0.80 - 0.465) \times 6,000 = 2,010 \text{ PSI (lower)}$

MSIP (gradient) allowed = lower of the two values determined $-\frac{2,010 \text{ PSI}}{2,010 \text{ PSI}}$ (this time the lower layer with a cap of 0.50 psi/ft times the top of the zone) will be divided by the depth to the top of the permitted injection interval.

Example Calculation: $2,010 \div 4,000 = 0.5025 \text{ psi/ft} > 0.5 = MSIP = 0.5 \text{ psi/ft}$

Output: Maximum Daily Injection Volume

- MDIV will be determined using the following methodology:
 - Maximum Daily Injection Volume (MDIV) will be determined using
 - Initial Average Reservoir Pressure

PRIMARY AOR+ SCORE FOR 0.5 MILE (TOC REVIEW)	PASS	1	FAIL	0		
SECONDARY AOR+ SCORE FOR 0.5 MILE TO 2 MILE	PASS	1	REDUCE MSIP	0		
MSIP PRESSURE GRADIENT DEDUCT BASED ON AOR SCORE	-0.05	psi/ft				
RADIUS OF REVIEW	2	Miles				
MAX ALLOWABLE PORE PRESSURE GRADIENT	0.75	psi/ft				
MAX POSSIBLE MSIP	0.5	psi/ft				
MINIMUM BARRIER ZONE THICKNESS	25	ft				
MSIP DETERMINATION	ZONE DEPTHS FROM OPERATOR	FRAC GRADIENT FROM OPERATOR	CLOSURE / CONFINING PRESSURE	CLOSURE STRESS OF CONFINING INTERVAL - HYDROSTATIC HEAD	MSIP GRADIENT BASED ON UPPER CONFINING ZONE	PERMITTED MDIV
	(ft)	(psi/ft)	(psi)	(psi)	(psi/ft)	(bwpd)
Top of Upper Confining Zone	4,400	1.1	4,840			
Bottom of Upper Confining Zone	4,500	1.1	4,950	2.044	0.500	
Top of Permitted Injection Interval	4,500	0.65	2,925	2,844		30,000
Bottom of Permitted Injection Interval	6,000	0.65	3,900	3,792		
Top of Lower Confining Zone	6,000	1.10	6,600	3,792		
Bottop of Lower Confining Zone	6,050	1.10	6,655			
MDIV vs. Reservoir Pore Pressure	А	В	С	D		
	40,000	30,000	20,000	10,000		
AVE PORE PRESS FROM OPERATOR DATA = 0.600 psi/ft @ 4,500	<= 0.5 psi/ft	> 0.5 psi/ft & <= 0.6 psi/ft	> 0.6 psi/ft & <= 0.7 psi/ft	> 0.7 psi/ft		
		30000				
FINAL MDIV BASED ON PORE PRESSURE	30,000	MAX INJ RATE	20.8			
	(bwpd)		(bpm)			

Output: Maximum Injection Rate

MIR will be determined by MDIV (barrels/day) ÷ 1,440 minutes/day = (bbl/min.)

PASS	1	FAIL	0		
PASS	1	REDUCE MSIP	0		
- 0.05 psi/ft					
2 Miles					
0.75	psi/ft				
0.5	psi/ft				
25	ft				
ZONE DEPTHS FROM OPERATOR	FRAC GRADIENT FROM OPERATOR	CLOSURE / CONFINING PRESSURE	CLOSURE STRESS OF CONFINING INTERVAL - HYDROSTATIC HEAD	MSIP GRADIENT BASED ON UPPER CONFINING ZONE	PERMITTED MDIV
(ft)	(psi/ft)	(psi)	(psi)	(psi/ft)	(bwpd)
4,400	1.1	4,840			
4,500	1.1	4,950	2.944	0.500	
4,500	0.65	2,925	2,044		30,000
6,000	0.65	3,900	2 702		
6,000	1.10	6,600	3,732		
6,050	1.10	6,655			
А	В	С	D		
40,000	30,000	20,000	10,000		
<= 0.5 psi/ft	> 0.5 psi/ft & <= 0.6 psi/ft	> 0.6 psi/ft & <= 0.7 psi/ft	> 0.7 psi/ft		
	30000				
30,000	MAX INJ RATE	20.8			
	PASS -0.05 2 0.75 0.5 25 ZONE DEPTHS FROM OPERATOR (ft) 4,400 4,500 4,500 6,000 6,000 6,000 A 40,000 <= 0.5 psi/ft	PASS 1 -0.05 psi/ft 2 Miles 0.75 psi/ft 0.5 psi/ft 25 ft ZONE DEPTHS FROM OPERATOR (ft) (psi/ft) 4,400 1.1 4,500 0.65 6,000 0.65 6,000 0.65 6,000 1.10 A B 40,000 30,000 <=0.5 psi/ft 30000	PASS 1 REDUCE MSIP -0.05 psi/ft 0.75 psi/ft 0.5 psi/ft 25 ft ZONE DEPTHS FROM OPERATOR (ft) (psi/ft) (psi) 4,400 1.1 4,840 4,500 1.1 4,950 4,500 0.65 2,925 6,000 0.65 3,900 6,000 1.10 6,600 6,050 1.10 6,655 A B C 40,000 30,000 20,000 <= 0.5 psi/ft 8 <= 0.6 psi/ft 8 <= 0.7 psi/ft 8 <= 0	PASS	PASS

Well Completion & Permit Conditions (1 of 2)

- Initial Bottomhole Pressure (BHP): data point prior to injection.
- Initial fracture gradient: DFIT or STEP RATE TEST, prior to injection, submitted via sealed report to UIC & to TexNet - analysis to be included with a digital (i.e., txt, csv, EXCEL) copy of the entire test including time, rate, pressure.
- Radial CBLs on long string casing.
- Log Suite, or best available data source, with annotation of upper and lower confinement (if possible) and lithologic units, and net pay highlighted, confirming porosity-height product for entire permitted injection interval.

Well Completion & Permit Conditions (2 of 2)

- Bottomhole Pressure Reporting:
 - Annual Frequency.
 - Instantaneous shut-in pressure measurement.
 - 24-hour shut-in time.
 - BHP: Downhole gauge, Dip-in measurement, Calculated.
 - Reported to TexNet and UIC.
- TexNet Volume Reporting Daily measurement /Monthly Reporting.

Seismicity (1 of 2)

- In the Permian Basin, we will continue to observe the "Shallow/Deep" conventions as currently practiced:
 - Delaware Basin: Shallow is above the base of the Wolfcamp; deep is below.
 - Midland Basin: Shallow is above the top of the Strawn; deep is below.
- Applications in seismically active areas will need to provide data required by seismic guidelines (ex. maps and cross sections)

Seismicity (2 of 2)

- "Shallow" applications will
 - Generally, not need Fault Slip Potential analysis.
 - Be evaluated under the Permian Review rubric, not the Seismic Guidelines (i.e. MDIV and MSIP determined by min. stress and Ppi.)
- However, the State Seismologists may identify an area in which seismicity from shallow injection is a concern and subject applications in such an area to evaluation under the seismic guidelines.

Demonstration

- <u>UIC Permian Pressure Review V1.0 Workbook</u>
 - uic-permian-review-v1-0